На главную Учителям Школьникам Абитуриентам Студентам Родителям Форум Добавить материал Заказать работу Поиск документов
Реклама
Реклама
 Еще статьи из раздела "Уроки по алгебре"
 Точки и прямые, числа и плоскость. Беседа.
 Натуральные числа и делимость. Беседа.
 Функции и графики. Беседа.
посмотреть все статьи раздела

 Автор документа:

Диалог Гуманитария и Математика.

Г: ? Что может быть проще натурального ряда? 1, 2, 3, 5,... и так далее, без конца. То есть, для всякого натурального числа (n) найдется число, еще большее ? например, следующее за ним число (n+1). При этом каждое натуральное число (n) следует за неким другим числом ? тем, которое обозначается (n-1). Только единица 1 ни за кем не следует: она ? первая среди натуральных чисел. Выйдя из единицы и последовательно переходя от предыдущего числа к последующему, мы пройдем весь натуральный ряд ? если, конечно, нам дано неограниченное время.

Так рассуждает обычный Гуманитарий на обыденном языке ? русском, английском или китайском. Но Математик, как вам уже известно, подобен Французу ? или, если угодно, Ирокезу. О чем ему ни расскажешь на обычном языке ? он все переводит на свой язык, и получается нечто совсем иное. Например, во что превратит Математик наши наивные рассуждения о натуральных числах? Послушаем этого странного эксперта:

М: ? Ой, как здорово! Всего в пяти фразах вы описали все главные свойства натуральных чисел. Теперь я могу по вашим словам составить систему определений и аксиом, описывающих натуральный ряд (N) со всеми потрохами ? включая арифметические действия! Вот, смотрите:

Аксиома 1. Всякому элементу (n) из множества (N) сопоставлен единственный элемент (n"), СЛЕДУЮЩИЙ за ним и отличный от него.

Аксиома 2. Единица (1) не следует ни за каким элементом множества (N).

Аксиома 3. Каждый элемент (n) множества (N), кроме единицы, следует за некоторым элементом ("n) из (N), отличным от (n).

Аксиома 4. Если (n" = m"), то (n = m).

Аксиома 5. Если подмножество (А) в множестве (N) содержит единицу (1) и, вместе с каждым своим элементом (а), содержит также следующий за ним элемент (а") ? то (А) СОВПАДАЕТ со всем множеством (N).

М: ? Вот вам пять фраз на математическом языке, равносильные тем пяти русским фразам, которыми вы описали свойства натуральных чисел. Как вам это нравится?

Г: ? Боюсь, что ирокезские фразы нравятся только тому, кто сведущ в ирокезском языке. То же самое можно сказать о математических фразах. Кстати, вы обещали сформулировать аксиомы натурального ряда так, что из них будет следовать вся арифметика. Этого пока не видно! В ваших аксиомах не заметно ни знака (+), ни числа (2). Как же мы узнаем, что (2+2 = 4)?

М: ? Чтобы это узнать, нужно дать определение СУММЫ двух натуральных чисел. Вот оно:

О1. Для всякого (n), (n+1) = n".

О2. Если сумма (n+m) уже определена, то n+(m") = (n+m)".

Иными словами, число (2) следует за единицей (1): таково его определение, (2 = 1"). Аналогично, (3 = 2"), (4 = 3") ? тоже по определению чисел (3) и (4). А дальше все просто:

2+2 = 2+(1") = (2+1)" = (2")" = 3" = 4.

Все эти равенства вытекают из определения суммы двух натуральных чисел!

Г: ? Вот как! Значит, фраза "Два плюс два равно четыре" ? это ФОРМУЛИРОВКА теоремы, И уважаемый Математик сейчас рассказал нам ДОКАЗАТЕЛЬСТВО этой теоремы, используя ОПРЕДЕЛЕНИЯ чисел (2) и (4), а также определение СУММЫ двух натуральных чисел и определение всего МНОЖЕСТВА натуральных чисел. Это последнее (а вернее ? первое, изначальное) определение натурального ряда (N) состоит из пяти аксиом, которые мы нечаянно выразили на обыденном языке. Так вас надо понимать, товарищ Математик?

М: ? Именно так! И не жалуйтесь на мое иноязычие. Ведь вы сами довольно быстро осваиваете мой "ирокезский" язык! Какие у вас еще есть вопросы?

Г: ? Ясно, какие! Докажите теперь, что "Дважды два ? четыре"! Об умножении у вас пока ни слова не было. Что же, вы опять придумаете новое определение?

М: ? Ну конечно! Вот оно:

О3. Для всякого (n), (n*1) = (n).

О4. Если произведение (n*m) уже определено, то

n*(m") = (n*m) + n.

М: ? Теперь докажем, для примера, что "Дважды два ? четыре".

Вот так: 2*2 = 2*(1") = (2*1) + 2 = 2+2 = 4.

Здесь все равенства, кроме последнего, вытекают из определений суммы и произведения натуральных чисел. А последнее равенство мы недавно доказали: это была наша первая теорема о натуральных числах.

Г: ? Да, это понятно. Но если так ? значит, вся таблица умножения состоит из формулировок теорем! И все их надо доказывать... Неужели каждую отдельно ? так, как вы сейчас доказывали, что "Дважды два ? четыре"?

М: ? Конечно, нет! Для того и был создан математический язык, чтобы сводить длинные рассуждения к коротким. Ведь и первоклассники учат наизусть не всю таблицу умножения, а только небольшой ее кусок ? до строки "Десятью десять ? сто". Дальше запоминать не нужно, а надо выучить ПРАВИЛО умножения чисел "столбиком". Это и есть формулировка самой важной теоремы об умножении натуральных чисел ? разумеется, в ДЕСЯТИЧНОЙ системе записи. Если бы мы пользовались ДВОИЧНОЙ записью (как делают наши компьютеры), то необходимая таблица умножения была бы еще короче ? только до строки "Дважды два ? четыре". А дальше ? простое правило умножения столбиком!

Г: ? Вот теперь, кажется, понятно! Значит, каждое действие ? сложение или умножение ? определяется с помощью двух аксиом. Из них выводятся несколько теорем-формул, составляющих таблицу умножения (либо сложения) однозначных чисел. И еще две теоремы: о сложении либо умножении многозначных чисел столбиком... А как быть с ОБРАТНЫМИ действиями ? вычитанием и делением натуральных чисел?

М: ? С вычитанием все просто: оно определяется аналогично сложению, но для получения разности нужно сдвигать первое слагаемое вдоль натурального ряда не вправо, а ВЛЕВО. Поскольку такой сдвиг не всегда возможен (слева от единицы ничего нет), то для выполнимости вычитания пришлось РАСШИРИТЬ натуральный ряд до ряда ЦЕЛЫХ чисел (Z): он бесконечен в ОБЕ стороны, с тем же шагом 1.

// Кстати, вот вам полезная ЗАДАЧА: напишите систему аксиом, задающую множество всех целых чисел (Z). Какие из пяти аксиом натурального ряда вам придется изменить, и как изменить?

Г: ? Спасибо: эта задача, кажется, под силу обычному человеку. А как насчет операции УМНОЖЕНИЯ среди целых чисел? Почему все-таки "Минус, умноженный на Минус, дает Плюс"? Из чего этот факт выводится?

М: ? Ни из чего! Это НОВАЯ АКСИОМА, без которой арифметику целых чисел не построить. Конечно, ее можно заменить ДРУГОЙ аксиомой: например, "Минус, умноженный на Минус, дает Минус". Но этим мы загубим операцию умножения: обратная операция (деление) станет НЕОДНОЗНАЧНОЙ, и даже простейшие линейные уравнения окажутся без решений.

Г: ? Ладно: этому можно поверить без доказательства. А вот насчет ДЕЛЕНИЯ ? это дело серьезное. По аналогии со сложением и умножением я делаю вывод: правило деления столбиком ? это тоже теорема, с довольно сложным доказательством. Верно?

М: ? Да, именно так! Но в основе почти каждой трудной теоремы лежат одна-две леммы с простыми формулировками и не очень сложными доказательствами. Внутри теоремы о делении целых чисел скрыта всего одна такая лемма: о СУЩЕСТВОВАНИИ и ЕДИНСТВЕННОСТИ деления с ОСТАТКОМ среди натуральных чисел. Вот ее точная формулировка:

ЛЕММА. Пусть даны два натуральных числа (а) и (в), причем (а>в). Тогда существуют целые числа (с) и (d) такие, что а = с*в + d. При этом 0

загрузка...
Реклама

Все материалы сайта Rambler's Top100

Авторство размещенных материалов администрацией не проверяется.
В случае, если вы являетесь автором какого-либо размещенного материала и вас не устраивают условия размещения,
то обратитесь пожалуйста к авторам проекта для исправления.

При копировании любых материалов с данного сайта, ссылка на сайт - обязательна. | Статьи партнёров

Обратная связь

Ваш IP:
54.221.73.186 (54.221.73.186, 54.221.73.186)